Dynamic minimum set problem for reserve design: Heuristic solutions for large problems
نویسندگان
چکیده
Conversion of wild habitats to human dominated landscape is a major cause of biodiversity loss. An approach to mitigate the impact of habitat loss consists of designating reserves where habitat is preserved and managed. Determining the most valuable areas to preserve in a landscape is called the reserve design problem. There exists several possible formulations of the reserve design problem, depending on the objectives and the constraints. In this article, we considered the dynamic problem of designing a reserve that contains a desired area of several key habitats. The dynamic case implies that the reserve cannot be designed in one time step, due to budget constraints, and that habitats can be lost before they are reserved, due for example to climate change or human development. We proposed two heuristics strategies that can be used to select sites to reserve each year for large reserve design problem. The first heuristic is a combination of the Marxan and site-ordering algorithms and the second heuristic is an augmented version of the common naive myopic heuristic. We evaluated the strategies on several simulated examples and showed that the augmented greedy heuristic is particularly interesting when some of the habitats to protect are particularly threatened and/or the compactness of the network is accounted for.
منابع مشابه
Design of a New Mathematical Model for Integrated Dynamic Cellular Manufacturing Systems and Production Planning
This paper presents a new mathematical model for integrated dynamic cellular manufacturing systems and production planning that minimizes machine purchasing, intra-cell material handling, cell reconfiguration and setup costs. The presented model forms the manufacturing cells and determines the quantity of machine and movements during each period of time. This problem is NP-hard, so a meta-heur...
متن کاملAlgorithms for NP-hard Optimization Problems and Cluster Analysis
Algorithms for NP-hard Optimization Problems and Cluster Analysis by Nan Li The set cover problem, weighted set cover problem, minimum dominating set problem and minimum weighted dominating set problem are all classical NP-hard optimization problems of great importance in both theory and real applications. Since the exact algorithms, which require exhaustive exploration of exponentially many op...
متن کاملConstrained Multi-Objective Optimization Problems in Mechanical Engineering Design Using Bees Algorithm
Many real-world search and optimization problems involve inequality and/or equality constraints and are thus posed as constrained optimization problems. In trying to solve constrained optimization problems using classical optimization methods, this paper presents a Multi-Objective Bees Algorithm (MOBA) for solving the multi-objective optimal of mechanical engineering problems design. In the pre...
متن کاملA New Solution for the Cyclic Multiple-Part Type Three-Machine Robotic Cell Problem based on the Particle Swarm Meta-heuristic
In this paper, we develop a new mathematical model for a cyclic multiple-part type threemachine robotic cell problem. In this robotic cell a robot is used for material handling. The objective is finding a part sequence to minimize the cycle time (i.e.; maximize the throughput) with assumption of known robot movement. The developed model is based on Petri nets and provides a new method to calcul...
متن کاملHeuristic approach to solve hybrid flow shop scheduling problem with unrelated parallel machines
In hybrid flow shop scheduling problem (HFS) with unrelated parallel machines, a set of n jobs are processed on k machines. A mixed integer linear programming (MILP) model for the HFS scheduling problems with unrelated parallel machines has been proposed to minimize the maximum completion time (makespan). Since the problem is shown to be NP-complete, it is necessary to use heuristic methods to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2018